Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 18(2): e0281898, 2023.
Article in English | MEDLINE | ID: covidwho-2275111

ABSTRACT

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS coronavirus 2 (SARS-CoV-2) virus. Direct assessment, detection, and quantitative analysis using high throughput methods like single-cell RNA sequencing (scRNAseq) is imperative to understanding the host response to SARS-CoV-2. One barrier to studying SARS-CoV-2 in the laboratory setting is the requirement to process virus-infected cell cultures, and potentially infectious materials derived therefrom, under Biosafety Level 3 (BSL-3) containment. However, there are only 190 BSL3 laboratory facilities registered with the U.S. Federal Select Agent Program, as of 2020, and only a subset of these are outfitted with the equipment needed to perform high-throughput molecular assays. Here, we describe a method for preparing non-hazardous RNA samples from SARS-CoV-2 infected cells, that enables scRNAseq analyses to be conducted safely in a BSL2 facility-thereby making molecular assays of SARS-CoV-2 cells accessible to a much larger community of researchers. Briefly, we infected African green monkey kidney epithelial cells (Vero-E6) with SARS-CoV-2 for 96 hours, trypsin-dissociated the cells, and inactivated them with methanol-acetone in a single-cell suspension. Fixed cells were tested for the presence of infectious SARS-CoV-2 virions using the Tissue Culture Infectious Dose Assay (TCID50), and also tested for viability using flow cytometry. We then tested the dissociation and methanol-acetone inactivation method on primary human lung epithelial cells that had been differentiated on an air-liquid interface. Finally, we performed scRNAseq quality control analysis on the resulting cell populations to evaluate the effects of our virus inactivation and sample preparation protocol on the quality of the cDNA produced. We found that methanol-acetone inactivated SARS-CoV-2, fixed the lung epithelial cells, and could be used to obtain noninfectious, high-quality cDNA libraries. This methodology makes investigating SARS-CoV-2, and related high-containment RNA viruses at a single-cell level more accessible to an expanded community of researchers.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Chlorocebus aethiops , Methanol , Acetone , Single-Cell Gene Expression Analysis , Epithelial Cells
2.
Int J Environ Res Public Health ; 20(3)2023 01 25.
Article in English | MEDLINE | ID: covidwho-2216014

ABSTRACT

The consumption of alcohol in a population is usually monitored through individual questionnaires, forensics, and toxicological data. However, consumption estimates have some biases, mainly due to the accumulation of alcohol stocks. This study's objective was to assess alcohol consumption in Slovakia during the COVID-19 pandemic-related lockdown using wastewater-based epidemiology (WBE). Samples of municipal wastewater were collected from three Slovak cities during the lockdown and during a successive period with lifted restrictions in 2020. The study included about 14% of the Slovak population. The urinary alcohol biomarker, ethyl sulfate (EtS), was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). EtS concentrations were used to estimate the per capita alcohol consumption in each city. The average alcohol consumption in the selected cities in 2020 ranged between 2.1 and 327 L/day/1000 inhabitants and increased during days with weaker restrictions. WBE can provide timely information on alcohol consumption at the community level, complementing epidemiology-based monitoring techniques (e.g., population surveys and sales statistics).


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Cities , Slovakia/epidemiology , Chromatography, Liquid/methods , Pandemics , Tandem Mass Spectrometry/methods , COVID-19/epidemiology , Communicable Disease Control , Alcohol Drinking/epidemiology , Ethanol/analysis
3.
Science ; 372(6542): 635-641, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1148098

ABSTRACT

Slovakia conducted multiple rounds of population-wide rapid antigen testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2020, combined with a period of additional contact restrictions. Observed prevalence decreased by 58% (95% confidence interval: 57 to 58%) within 1 week in the 45 counties that were subject to two rounds of mass testing, an estimate that remained robust when adjusting for multiple potential confounders. Adjusting for epidemic growth of 4.4% (1.1 to 6.9%) per day preceding the mass testing campaign, the estimated decrease in prevalence compared with a scenario of unmitigated growth was 70% (67 to 73%). Modeling indicated that this decrease could not be explained solely by infection control measures but required the addition of the isolation and quarantine of household members of those testing positive.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/isolation & purification , COVID-19/transmission , Humans , Prevalence , Quarantine , SARS-CoV-2/immunology , Slovakia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL